资源类型

期刊论文 348

会议视频 4

年份

2023 36

2022 25

2021 25

2020 13

2019 18

2018 16

2017 28

2016 27

2015 8

2014 8

2013 11

2012 7

2011 10

2010 15

2009 14

2008 21

2007 26

2006 4

2005 7

2004 10

展开 ︾

关键词

原子力显微镜 4

发展战略 4

三峡工程 2

仿真优化 2

力常数 2

动力特性 2

技术预见 2

自主开发 2

键能 2

键长 2

&ldquo 1

12相整流 1

2035年 1

360°表征 1

3D打印 1

ANFIS 1

ARM 1

CAE 1

CAN总线 1

展开 ︾

检索范围:

排序: 展示方式:

Comparisons of bridges flutter derivatives and generalized ones

Fuyou XU , Zhe ZHANG , Cailiang HUANG , Airong CHEN ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 272-278 doi: 10.1007/s11709-009-0042-1

摘要: The causes of the nonlinearity of self-excited aerodynamic force of bridge are interpreted from such two aspects as amplitude and wind velocity. The concept of “generalized flutter derivative” is proposed, and its physical meaning is illustrated. The graphs of the generalized flutter derivatives of plate and Sutong Bridge section model are plotted. The characteristics of all generalized flutter derivatives are compared and analyzed, and their superiorities are verified. The results indicate that the physical meaning of generalized flutter derivatives are more explicit compared to the traditional ones. It is more convenient to understand the nonlinearity properties of self-excited aerodynamic force of bridge according to the generalized flutter derivatives graphs with the wind velocity as the horizontal coordinate.

关键词: bridge     flutter derivative     generalized flutter derivative     self-excited aerodynamic force     Sutong Bridge    

Mechanism of self-excited torsional vibration of locomotive driving system

Jianxin LIU, Huaiyun ZHAO, Wanming ZHAI

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 465-469 doi: 10.1007/s11465-010-0115-9

摘要: A single wheelset drive model and 2-DOFs torsional vibration model were established to investigate the self-excited torsional vibration of a locomotive driving system. The simulation results indicate that the self-excited torsional vibration occurs when the steady slip velocity is located at the descending slope of the adhesion coefficient curve. The principle of energy conservation was used to analyze the mechanism of the self-excited vibration. The factors affecting on the amplitude of the self-excited vibration are studied.

关键词: locomotive     driving system     self-excited torsional vibration     mechanism     influence factor    

Analysis and control of wind-driven self-excited induction generators connected to the grid through power

S. Senthil KUMAR, N. KUMARESAN, N. Ammasai GOUNDEN, Namani RAKESH

《能源前沿(英文)》 2012年 第6卷 第4期   页码 403-412 doi: 10.1007/s11708-012-0208-8

摘要: The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power as equivalent load resistance in the steady-state equivalent circuit of SEIG has been formulated. The technique of genetic algorithm (GA) has been adopted for making the analysis of the proposed system simple and straightforward. The control of SEIG is attempted by connecting an uncontrolled diode bridge rectifier (DBR) and a line commutated inverter (LCI) between the generator terminals and three-phase utility grid. A simple control technique for maximum power point tracking (MPPT) in wind energy conversion systems (WECS), in which the firing angle of the LCI alone needs to be controlled by sensing the rotor speed of the generator has been proposed. The effectiveness of the proposed method of MPPT and method of analysis of this wind-driven SEIG-converter system connected to the grid through power converters has been demonstrated by experiments and simulation. These experimental and simulated results confirm the usefulness and successful working of the proposed system and its analysis.

关键词: self-excited induction generator (SEIG)     renewable power generation     power converters     maximum power point tracking (MPPT)     steady state analysis     power generation systems    

自振空化射流研究与应用进展

李根生,沈忠厚,周长山,张德斌,廖华林

《中国工程科学》 2005年 第7卷 第1期   页码 27-32

摘要:

介绍一种新型射流——自振空化射流的设计原理、冲击压力特性、冲蚀破岩特性和现场应用情况。研究表明,以风琴管结构为基础设计的喷嘴可以产生强烈的自振空化射流,与锥角为 120°的普通锥形喷嘴相比,冲击压力脉动幅度和峰值分别提高24%和37%,冲蚀岩石效果提高1~2倍。自振空化射流已成功应用到石油工程中,研制出自振空化射流钻头、高压旋转自振空化射流处理近地层技术和自激波动注水技术,取得明显的经济效益。

关键词: 自激振动     空化射流     石油钻井     油气开采    

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 272-282 doi: 10.1007/s11709-016-0346-x

摘要: In the past, several self-centering (SC) seismic systems have been developed. However, examples of self-centering systems used in practice are limited due to unusual field construction practices, high initial cost premiums and deformation incompatibility with the gravity framing. A self centering beam moment frame (SCB-MF) has been developed that mitigates several of these issues while adding to the advantages of a typical SC system. The self-centering beam (SCB) is a shop-fabricated, self-contained structural component that when implemented in a moment resisting frame can bring a building back to plumb after an earthquake. This paper describes the SCB concepts and experimental program on five SCB specimens at two-third scale relative to a prototype building. Experimental results are presented including the global force-deformation behavior. The SCBs are shown to undergo 5%–6% story drift without any observable damage to the SCB body and columns. Strength equations developed for the SCB predict the moment capacity well, with a mean difference of 6% between experimental and predicted capacities. The behavior of the restoring force mechanism is described. The limit states that cause a loss in system's restoring force which lead to a decrease in the self-centering capacity of the SCB-MF, are presented.

关键词: self-centering seismic system     seismic design     hysteretic behavior     restoring force     resilient structural system    

Aerodynamic impact of train-induced wind on a moving motor-van

Jiajun HE; Huoyue XIANG; Yongle LI; Bin HAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 909-927 doi: 10.1007/s11709-022-0833-1

摘要: The newly-built single-level rail-cum-road bridge brings the issue of the aerodynamic impact of train-induced wind on road automobiles. This research introduced a validated computational fluid dynamics (CFD) model regarding this concern. Such an aerodynamic impact mechanism was explored; a relationship between the transverse distance between train and motor-van (hereinfafter referred to as van) and the aerodynamic effects on the van was explored to help the optimization of bridge decks, and the relationship between the automobile speed and aerodynamic variations of a van was fitted to help traffic control. The fitting results are accurate enough for further research. It is noted that the relative speed of the two automobiles is not the only factor that influences the aerodynamic variations of the van, even at a confirmed relative velocity, the aerodynamic variations of the van vary a lot as the velocity proportion changes, and the most unfavorable case shows an increase of over 40% on the aerodynamic variations compared to the standard case. The decay of the aerodynamic effects shows that not all the velocity terms would enhance the aerodynamic variations; the coupled velocity term constrains the variation amplitude of moments and decreases the total amplitude by 20%–40%.

关键词: rail-cum-road bridge     aerodynamic impact     train-induced wind     CFD     aerodynamic force     quantitative analysis     fitting    

Ranking of design scenarios of TMD for seismically excited structures using TOPSIS

Sadegh ETEDALI

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1372-1386 doi: 10.1007/s11709-020-0671-y

摘要: In this paper, design scenarios of a tuned mass damper (TMD) for seismically excited structures are ranked. Accordingly, 10 design scenarios in two cases, namely unconstrained and constrained for the maximum TMD, are considered in this study. A free search of the TMD parameters is performed using a particle swarm optimization (PSO) algorithm for optimum tuning of TMD parameters. Furthermore, nine criteria are adopted with respect to functional, operational, and economic views. A technique for order performance by similarity to ideal solution (TOPSIS) is utilized for ranking the adopted design scenarios of TMD. Numerical studies are conducted on a 10-story building equipped with TMD. Simulation results indicate that the minimization of the maximum story displacement is the optimum design scenario of TMD for the seismic-excited structure in the unconstrained case for the maximum TMD stroke. Furthermore, H of the displacement vector of the structure exhibited optimum ranking among the adopted design scenarios in the constrained case for the maximum TMD stroke. The findings of this study can be useful and important in the optimum design of TMD parameters with respect to functional, operational, and economic perspectives.

关键词: seismic-excited building     TMD     optimum design     PSO     design scenario     TOPSIS    

Experimental study of modal parameter identification in a simulated ambient-excited structure

JI Xiaodong, QIAN Jiaru, XU Longhe

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 281-285 doi: 10.1007/s11709-007-0036-9

摘要: Structure modal parameter online identification was used to monitor the structural health as evidenced by changes in the vibration characteristics. The natural excitation technique and the eigensystem realization algorithm were combined to identify the modal parameters in the time domain of a structure excited by simulated ambient vibrations. The mass-normalized mode shapes were obtained from the eigen-sensitivity analysis. The experimental modal analysis was performed on a two-story steel braced frame model excited by simulated ambient vibrations and hammer impacts. The mass-normalized mode shapes were acquired by changing the structural mass and by eigen-sensitivity analy sis. From finite element analysis results and the experimental data, it is shown that this method is effective.

关键词: eigensystem realization     eigen-sensitivity analysis     realization algorithm     vibration     effective    

Numerical analysis of aerodynamic noise radiated from cross flow fan

CHEN Anbang, LI Song, HUANG Dongtao

《能源前沿(英文)》 2008年 第2卷 第4期   页码 443-447 doi: 10.1007/s11708-008-0063-9

摘要: The flow field in a cross flow fan was simulated by solving the 2-D unsteady Reynolds-averaged Navier-Stokes equations. The calculated pressure fluctuations of the blades, the vortex wall, and the rear wall were then used as noise sources to calculate the sound field. The Ffowcs Williams-Hawkings (FW-H) equation was employed to predict the noise field caused by these sources. The predictions show that the rear wall and the vortex wall sources contribute significantly to the total noise and that both the predicted aerodynamic performance and noise agree well with the experimental results.

关键词: predicted aerodynamic     Williams-Hawkings     calculated pressure     aerodynamic performance     unsteady Reynolds-averaged    

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 420-426 doi: 10.1007/s11465-017-0439-9

摘要:

A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

关键词: wind power     brushless electrically excited synchronous generator     hybrid rotor     equivalent circuit    

Sectional model test study on vortex-excited resonance of vehicle-bridge system of Shanghai Bridge over

Li ZHOU, Yaojun GE

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 67-72 doi: 10.1007/s11709-009-0007-4

摘要: It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems, because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder sections. Based on the Shanghai Bridge over the Yangtse River, the vortex-excited resonance of a 1∶60 scale sectional model was tested in a TJ-1wind tunnel, with or without vehicles at the attack angle of 0°, +3 and -3°, respectively. The conversion relationships between the resonant amplitudes of the sectional model and that of the prototype bridge were also established by mode shape correction. The result indicates that: 1) for the bridge with vehicles, the vertical vortex-excited resonance is accompanied by torsion vibration with the same frequency, and vice versa, 2) the amplitude of vortex-excited resonance of the bridge with vehicles is much larger than that of the bridge without vehicles, and 3) the lock-in wind speed of the vortex-excited resonance becomes smaller due to the disturbance of vehicles. It is obvious that vehicles bring about changes in the aerodynamic shape of the main girder. Therefore, the influence of vehicles on vortex-excited resonance performance of vehicle-bridge systems, in terms of both amplitude and mode, should not be ignored.

关键词: vehicle-bridge system     sectional mode     vortex-excited resonance     wind tunnel test     mode shape correction    

Flutter control effect and mechanism of central-slotting for long-span bridges

YANG Yongxin, GE Yaojun, XIANG Haifan

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 298-304 doi: 10.1007/s11709-007-0039-6

摘要: The flutter control effect and mechanism of central-slotting, which have gradually been adopted in the design and construction of long-span bridges as an effective flutter controlling measure, were investigated with theoretical analysis and wind tunnel test. Five basic girder cross-sections representing five typical aerodynamic configurations were selected and central-slotted with two different slot widths. Then, a series of sectional model tests and theoretical analyses based on the two-dimensional three-degrees-of-freedom coupling flutter analysis method (2 dimension-3 degrees of freedom method, 2d-3DOF method) were carried out to investigate the aerodynamic performance, flutter mechanism and flutter modality of the five basic sections and their corresponding central-slotted sections. The results show that central-slotting can not always improve the aerodynamic stability of bridge structure. The control effect of central-slotting depends on the aerodynamic configuration of the original girder section and the corresponding central-slotting width. If the original section is inappropriate or the slot width is unsuitable, central-slotting will even deteriorate the structural flutter performance. Theoretical investigations indicated that the differences in flutter control effects come from the different formation and evolution of aerodynamic damping, and flutter modality especially the participation level of heaving motion also has a significant influence on the control effect of central-slotting.

关键词: aerodynamic configuration     aerodynamic performance     flutter mechanism     aerodynamic stability     theoretical analysis    

Aerodynamic stability evolution tendency of suspension bridges with spans from 1000 to 5000 m

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0980-z

摘要: Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges. Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m, we proposed fitted equations for increasing spans and base frequencies. Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed. The structural parameters were optimized to follow the fitted tendencies. To analyze the aerodynamic instability, streamlined single-box section (SBS), lattice truss section (LTS), narrow slotted section (NSS), and wide slotted section (WSS) were considered. We performed three-dimensional (3-D) full-mode flutter analysis and nonlinear aerostatic instability analysis. The flutter critical wind speed continuously decreases with span growth, showing an unlimited approaching phenomenon. Regarding aerostatic instability, the instability wind speed decreases with span to approximately 3000 m, and increases when the span is in the range of 3000 to 5000 m. Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed, indicating the probability of aerostatic instability. This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter, and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.

关键词: suspension bridge     super long-span     finite element model     aerodynamic instability     aerodynamic configuration    

Experimental study of aerodynamic interference effects on aerostatic coefficients of twin deck bridges

Zhiwen LIU , Zhengqing CHEN , Gao LIU , Xinpeng SHAO ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 292-298 doi: 10.1007/s11709-009-0048-8

摘要: The aerodynamic interference effects on aerostatic coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test. The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks. The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck. The drag coefficients of a windward deck decrease slightly compared with that of a single deck. The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks. And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.

关键词: twin decks     aerodynamic interference effects     aerostatic coefficients     wind tunnel test    

New response surface model and its applications in aerodynamic optimization of axial compressor blade

LIU Xiaojia, NING Fangfei

《能源前沿(英文)》 2008年 第2卷 第4期   页码 541-549 doi: 10.1007/s11708-008-0077-3

摘要: A parametric method for the axial compressor 2D blade profiles is proposed in which the blade geometries are defined with the parameters commonly used for blade definition, which ensures that the geometric significance is clear and an unreasonable blade profile is not generated. Several illustrations are presented to show the fitting precision of the method. A novel response surface model is proposed which regards the objective distribution function in the vicinity of a sample as normal school, and then generates the response surface function in the whole design space by a linear combination of distribution functions of all the samples. Based on this model, a numerical aerodynamic optimization platform for the axial compressor 2D blade profiles is developed, by which aerodynamic optimization of two compressor blade profiles are presented.

关键词: definition     objective distribution     fitting precision     combination     numerical aerodynamic    

标题 作者 时间 类型 操作

Comparisons of bridges flutter derivatives and generalized ones

Fuyou XU , Zhe ZHANG , Cailiang HUANG , Airong CHEN ,

期刊论文

Mechanism of self-excited torsional vibration of locomotive driving system

Jianxin LIU, Huaiyun ZHAO, Wanming ZHAI

期刊论文

Analysis and control of wind-driven self-excited induction generators connected to the grid through power

S. Senthil KUMAR, N. KUMARESAN, N. Ammasai GOUNDEN, Namani RAKESH

期刊论文

自振空化射流研究与应用进展

李根生,沈忠厚,周长山,张德斌,廖华林

期刊论文

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

期刊论文

Aerodynamic impact of train-induced wind on a moving motor-van

Jiajun HE; Huoyue XIANG; Yongle LI; Bin HAN

期刊论文

Ranking of design scenarios of TMD for seismically excited structures using TOPSIS

Sadegh ETEDALI

期刊论文

Experimental study of modal parameter identification in a simulated ambient-excited structure

JI Xiaodong, QIAN Jiaru, XU Longhe

期刊论文

Numerical analysis of aerodynamic noise radiated from cross flow fan

CHEN Anbang, LI Song, HUANG Dongtao

期刊论文

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

期刊论文

Sectional model test study on vortex-excited resonance of vehicle-bridge system of Shanghai Bridge over

Li ZHOU, Yaojun GE

期刊论文

Flutter control effect and mechanism of central-slotting for long-span bridges

YANG Yongxin, GE Yaojun, XIANG Haifan

期刊论文

Aerodynamic stability evolution tendency of suspension bridges with spans from 1000 to 5000 m

期刊论文

Experimental study of aerodynamic interference effects on aerostatic coefficients of twin deck bridges

Zhiwen LIU , Zhengqing CHEN , Gao LIU , Xinpeng SHAO ,

期刊论文

New response surface model and its applications in aerodynamic optimization of axial compressor blade

LIU Xiaojia, NING Fangfei

期刊论文